Bayesian parameter estimation in dynamic population model via particle Markov chain Monte Carlo

نویسندگان

  • Meng Gao
  • XingHua Chang
  • XinXiu Wang
چکیده

In nature, population dynamics are subject to multiple sources of stochasticity. State-space models (SSMs) provide an ideal framework for incorporating both environmental noises and measurement errors into dynamic population models. In this paper, we present a recently developed method, Particle Markov Chain Monte Carlo (Particle MCMC), for parameter estimation in nonlinear SSMs. We use one effective algorithm of Particle MCMC, Particle Gibbs sampling algorithm, to estimate the parameters of a state-space model of population dynamics. The posterior distributions of parameters are derived given the conjugate prior distribution. Numerical simulations showed that the model parameters can be accurately estimated, no matter the deterministic model is stable, periodic or chaotic. Moreover, we fit the model to 16 representative time series from Global Population Dynamics Database (GPDD). It is verified that the results of parameter and state estimation using Particle Gibbs sampling algorithm are satisfactory for a majority of time series. For other time series, the quality of parameter estimation can also be improved, if prior knowledge is constrained. In conclusion, Particle Gibbs sampling algorithm provides a new Bayesian parameter inference method for studying population dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Channel Tracking for Relay Networks via Adaptive Particle MCMC

This paper presents a new approach for channel tracking and parameter estimation in cooperative wireless relay networks. We consider a system with multiple relay nodes operating under an amplify and forward relay function. We develop a novel algorithm to efficiently solve the challenging problem of joint channel tracking and parameters estimation of the Jakes’ system model within a mobile wirel...

متن کامل

Bayesian system identification via Markov chain Monte Carlo techniques

The work here explores new numerical methods for supporting a Bayesian approach to parameter estimation of dynamic systems. This is primarily motivated by the goal of providing accurate quantification of estimation error that is valid for arbitrary, and hence even very short length data records. The main innovation is the employment of the Metropolis–Hastings algorithm to construct an ergodic M...

متن کامل

Inference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method

We propose a new algorithm to do posterior sampling of Kingman’s coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Particle Gibbs Sampling method, which alternately samples coalescent times conditioned on coalescent tree structures, and tree structures conditioned on coalescent times via the conditional Sequential Mo...

متن کامل

Assessment of Mortgage Default Risk via Bayesian State Space Models

Managing risk at the aggregate level is crucial for banks and financial institutions as required by the Basel III framework. In this paper, we introduce discrete time Bayesian state space models with Poisson measurements to model aggregate mortgage default rate. We discuss parameter updating, filtering, smoothing, forecasting and estimation using Markov chain Monte Carlo methods. In addition, w...

متن کامل

A Practitioner’s Guide to Bayesian Estimation of Discrete Choice Dynamic Programming Models∗

This paper provides a step-by-step guide to estimating discrete choice dynamic programming (DDP) models using the Bayesian Dynamic Programming algorithm developed in Imai, Jain and Ching (2008) (IJC). The IJC method combines the DDP solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm, which solves the DDP model and estimates its structural parameters ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012